SileksMag-oligo(dT)₃₀

магнитные частицы с олиго $(дT)_{30}$ нуклеотидным зондом для выделения полиаденилированных мРНК

Кат. номер: К0190

Назначение: выделение полиаденилированных мРНК

Условия хранения: +4°C

Условия транспортировки: особых условий не требуется

Содержание:

1. Описание	1
2. Свойства и преимущества	2
3. Важная информация	2
4. Рекомендуемые буфера	3
5. Протокол выделения поли(А)РНК из культуры клеток	3
6. Связанные продукты	5
7. Контактные данные	5

1. Описание

Магнитные частицы с олиго $(дT)_{30}$ нуклеотидным зондом (oligo $(dT)_{30}$) поставляются в виде водной суспензии в готовом для использования виде. Использование частиц возможно также в системах автоматического выделения.

Магнитные частицы с олиго(дТ) $_{30}$ нуклеотидным зондом для аналитического выделение мРНК из неочищенных клеточных лизатов и ткани. Выделение происходит за счет гибридизация ковалентно связанных олиго(дТ) $_{30}$ с полиаденилированным участком, присутствующим в большинстве мРНК эукариот. Частицы можно применять не только для прямого выделение мРНК после лизиса, но также для вторичной очистки ранее выделенной тотальной РНК.

Технология магнитной сепарации масштабируема и позволяет выделять интактную мРНК в небольших объемах, без необходимости концентрировать выделенную мРНК при помощи преципитации.

Частицы можно использовать многократно.

Со связанной на частицах мРНК можно поступить двумя способами:

- 1. элюировать,
- 2. использовать связанный олиго $(дT)_{30}$ нуклеотидный зонд в качестве праймера в реакции первой цепи кДHK.

Основное преимущество данных частиц в том, что они обладают низкой неспецифической сорбцией белков и нуклеиновых кислот на своей поверхности.

Таблица 1. Описание и свойства магнитных частиц SileksMag-oligo(dT)₃₀

Основа Оксид железа

Тип магнетизации Суперпарамагнетик (нет остаточного намагничивания)

 Форма частиц
 Сфера

 Размер
 150-200 нм

 Концентрация
 5 мг/мл

Емкость частиц: около 2 мкг поли(А) мРНК на 1 мг частиц

 Буфер хранения
 Дистиллированная вода

 Условия хранения
 +4 °C, не замораживать

2. Свойства и преимущества

	Свойства	Преимущества
>	Ковалентно пришитый олиго(dT) ₃₀	Надежная фиксация зонда на поверхности
>	Высокая концентрация олиго(dT) ₃₀ на поверхности	Возможно получение большого количества поли(A)РНК. 1 мг частиц с олиго(dT) $_{30}$ способен связать около 2 мкг поли(A)РНК
>	Длинная ножка, на которой пришит олиго(dT) ₃₀ к поверхности частиц	Значительно повышается эффективность связывания
>	Связанные на поверхности мРНК могут быть непосредственно использованы в молекулярно- биологических приложениях	Связанную мРНК можно без предварительной элюции использовать в гибридизации, реакции обратной транскрипции и т.п.
>	Низкое неспецифическое связывание нуклеиновых кислот	Возможно выделение мРНК свободных от примесей посторонних нуклеиновых кислот
>	Инкапсулирование	Поверхность частиц химически инертная
>	Частицы являются в высокой степени гомогенными	Выделении на частицах одинакового размера дает высокую воспроизводимость в разных условиях
>	Устойчивость коллоидного состояния	Частицы легко переводятся в коллоидное состояние, не "слеживаются" при длительном хранении
>	Быстрая собираемость в магнитном поле	Процедура выделения ускоряется
>	Отсутствие остаточной намагниченности после удаления из магнитного поля	Частицы не слипаются, легко переводятся в коллоидное состояние
>	Стабильность в биологических буферных системах от pH 5 до pH 9	Можно использовать максимально подходящие для конкретного объекта буфера для отмывок и хранения
>	Стабильность в различных системах лизирующих и промывочных буферов от pH 5 до pH 12	Можно использовать максимально подходящие для конкретного объекта буфера
>	Стабильность в детергентах	Можно использовать большинство стандартно применяемых детергентов (Tween 20, Triton X100, SDS и т.п.)
>	Возможность многократного использования	Частицы могут быть отмыты и использованы многократно

3. Важная информация

- Не подвергайте частицы процедурам центрифугирования, замораживания и высушивания. Центрифугирование приводит к агрегации частиц и, как следствие, снижению их активности. Высушивание и замораживание также приводит к агрегации частиц.
- Перед началом работы проведите расчет необходимого количества частиц и исходного материала, исходя из емкости применяемых частиц.

4. Рекомендуемые буфера

Для работы с магнитными частицами SileksMag-oligo(dT) $_{30}$ мы рекомендуем использовать именно те буфера, которые мы приводим ниже.

Использование буферов, которые рекомендуют другие производители в своих протоколах, может привести к ухудшению результата и качества выделения.

Рекомендуемый Буфер для лизиса и связывания (Lysis and Binding Buffer, LBB)
 100 mM Tris-HCl, pH 8.0
 500 mM LiCl
 1% LiDS
 10 mM EDTA, pH 8.0
 5 mM DTT

• Рекомендуемый Буфер для 1-ой промывки (Wash 1 Buffer, W1)

10 mM Tris-HCl, pH 8.0 150 mM LiCl 0.1% LiDS 1 mM EDTA, pH 8.0

Рекомендуемый Буфер для 2-ой промывки (Wash 2 Buffer, W2)
 0.1-кратный SSC, pH 7.0
 готовится из 20-кратного SSC (0,3 М цитрата натрия в 3 М NaCl, доводят до pH 7.0 с помощью HCl)

Рекомендуемый Буфер для элюции (Elution Buffer, El)
 10 mM Tris-HCl, pH 8.0

5. Протокол выделения поли(А)РНК из культуры клеток

Протокол рассчитан на выделение поли(A)PHK из общего числа клеток в количестве от 1×10^5 до 2×10^5 . Следуя данному протоколу, будет выделен практически 100%-ный пул поли(A)PHK.

Схема протокола

1	2		3		4		5	6	
От 1 x 10 ⁵ до 2 x 10 ⁵ клеток	200 мкл LBB	5 мин	20 мкл частиц	5 мин	200 мкл W1 2 раза	3 мин	200 мкл W2 5 раз	50 мкл EL	5 мин +65 °C
Сбор центри- фугирова- нием	Лизис		Связывание		1-я отмывка 2 раза		2-я отмывка 5 раз	Элюция	

1. Внесите в 1.5 мл пробирку суспензию клеток в количестве от 1×10^5 до 2×10^5 . Соберите клетки центрифугированием при 8000 об./мин в течение 5 минут. После центрифугирования тщательно удалите супернатант.

2. Добавьте к осадку клеток 200 мкл буфера LBB. Тщательно перемешайте содержимое пробирки пипетированием до полного лизиса клеток.

Инкубируйте пробирку в течение 5 минут при комнатной температуре.

3. Добавьте к лизату 20 мкл хорошо ресуспендированных частиц SileksMag-oligo(dT)₃₀, тщательно перемешайте содержимое пробирки пипетированием.

Инкубируйте пробирку в течение 5 минут при комнатной температуре.

Поместите пробирку в магнитный штатив, как можно тщательнее удалите супернатант.

4. Перенесите пробирку в немагнитный штатив. Добавьте к частицам 200 мкл буфера W1. Тщательно ресуспендируйте частицы пипетированием.

Инкубируйте пробирку в течение 3 минут при комнатной температуре.

Поместите пробирку в магнитный штатив, как можно тщательнее удалите супернатант.

Повторите процедуру отмывки с буфером W1 еще раз.

5. Перенесите пробирку в немагнитный штатив. Добавьте к частицам 200 мкл буфера W2. Тщательно ресуспендируйте частицы пипетированием.

Поместите пробирку в магнитный штатив, как можно тщательнее удалите супернатант.

Повторите процедуру отмывки с буфером W5 еще 4 раза.

Поместите пробирку в магнитный штатив, как можно тщательнее удалите.

6. После окончания промывки, ресуспендируйте частицы в 50 мкл буфера EL или стерильной воды. Инкубируйте пробирку в течение 5 минут при +65 °C.

Перенесите препарат поли(А)РНК в чистую пробирку.

Рекомендации и комментарии к протоколу выделения из культур клеток

1. Если брать меньшее количество клеток, качество выделения будет выше.

При выделении из ткани следует принимать во внимание количество клеток, содержащихся в образце. Рекомендуемый буфер для лизиса и связывания применим в большинстве случаев. При работе с тканью может потребоваться центрифугирование лизата для удаления не полностью лизировавших кусочков ткани.

При выделении из ранее выделенной тотальной РНК пробирку с образцом необходимо предварительно прогреть 5 минут при при +65 °C, затем внести частицы SileksMag-oligo(dT)₃₀, перемешать их пипетированием, и только затем внести буфер LBB.

2. Если нет возможности оценить и подсчитать количество клеток в стартовом материале, исходите из того, что образец после лизиса не должен ни в коем случае быть вязким. В случае вязкости лизата, его необходимо развести буфером LBB до состояния, когда вязкость будет отсутствовать.

Время инкубации с буфером LBB в течение 5 минут — минимальное. Увеличение времени инкубации до 15 минут во многих случаях повышает качество выделения.

3. 20 мкл частиц SileksMag-oligo(dT)₃₀ достаточно, чтобы собрать практически всю поли(A)PHK из того количества клеток, которое мы рекомендуем в протоколе. При условии, что поли(A)PHK не подверглась деградации в процессе сбора и хранения материала.

Наше утверждение основано на сравнительном выделение поли(A)PHK на частицах SileksMag-oligo(dT) $_{30}$ с выделением тотальной PHK на частицах SileksMagNA из того же количества клеток.

- 4. Во время отмывки буфером W1 необходима непродолжительная инкубация. Если это не делать, качество выделения снижается. В большинстве случаев, одной процедуры отмывки буфером W1 бывает достаточно, но две процедуры дают большую гарантию качества отмывки.
- 5. Для максимально полного удаления примесей посторонних нуклеиновых кислот требуется 5 процедур отмывки буфером W2. Качество отмывки зависит от того, насколько тщательно частицы пипетируются во время каждой отмывки.

Для достижения максимального эффекта при отмывке мы рекомендуем после первой отмывки перенести частицы в чистую пробирку и провести еще 4 процедуры в чистой пробирке.

Наша рекомендация основана на том, что в некоторых случаях пластик, в котором происходит выделение, может сорбировать на своей поверхности различные примеси, в том числе, нуклеиновые кислоты. При элюции эти примеси с большой вероятностью могут оказаться в конечном препарате.

6. Использование буфера EL или воды не принципиально. Также, как и объем элюции. Мы рекомендуем конечный объем элюции от 30 до 50 мкл. Элюция должна проводиться при +65 °C для полной денатурации олиго(дТ) зонда с поли(A)PHK.

Элюцию можно не проводить. Частицы со связанной РНК можно прямо вносить в реакционную смесь для проведения синтеза первой цепи кДНК (или для проведения других видов анализа).

SileksMag-oligo(dT)₃₀, магнитные частицы с олиго(дТ)₃₀ нуклеотидным зондом для выделения полиаденилированных мРНК, кат. номер К0190, версия 210220

Повторное использование частиц

После проведения процедуры экстракции мРНК, частицы могут быть отмыты для дальнейшего повторного использования.

Для этого суспендируйте частицы в 5-кратном объеме 0.1 М NaOH (по отношению к начальному объему, в котором были суспендированы отмываемые частицы). Инкубируйте частицы при комнатной температуре в течении 5 минут, поместите пробирку с частицами в магнитный штатив и удалите раствор.

Перенесите частицы в немагнитный штатив. Ресуспендируйте частицы в 5-кратном объеме ТЕ (по отношению к начальному объему, в котором были суспендированы отмываемые частицы) и повторите процедуру промывки 3-5 раз.

Ресуспендируйте частицы в PBS, ТЕ или воде с 0.02% NaN₃ и храните частицы при +4°C.

Частицы могут быть повторно использованы по меньшей мере 5 раз.

При повторном использовании помните о возможности влияния не вполне отмытого материала на ваши результаты!

6. Связанные продукты

- SileksMag-oligo(dT)₃₀, магнитные частицы с олиго(дТ)₃₀ нуклеотидным зондом, кат. номер К0190
- LabMix Mini 201, лабораторный миксер, кат. номер EQMM201
 Миксер позволяет ускорить процедуру выделения, заменяя пипетирование
- Магнитные штативы для работы с магнитными частицами:

MagRack6, кат. номер EQMR006-2 MagRack16, кат. номер EQMR016 MagRack40, кат. номер EQMR040 MagRack50ML, кат. номер EQMR50ML

6. Контактные данные

телефон: +7 495 737 4224

эл. почта: info@sileks.com